Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Toxicol Environ Health B Crit Rev ; 27(3): 106-129, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375664

RESUMO

Cyclic and linear siloxanes are compounds synthesized from silicon consisting of alternating atoms of silicone and oxygen [Si-O] units with organic side chains. The most common cyclic siloxanes are octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), while the most common linear siloxanes are high molecular weight polydimethylsiloxanes (PDMS) and low molecular weight volatile linear siloxanes known as hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5). These compounds (1) exhibit low dermal toxicity, (2) are generally inert and non-reactive, and (3) are compatible with a wide range of chemicals offering beneficial chemical properties which include the following: wash-off or transfer resistance from the skin, sun protection factor (SPF) enhancement, emolliency in cleaning products). Because of these properties, these compounds are incorporated into multiple consumer products for use on the skin, such as cosmetics and health-care products, with over 300,000 tons annually sold into the personal care and consumer products sector. Because of their widespread use in consumer products and potential for human dermal exposure, a comprehensive understanding of the dermal absorption and overall fate of siloxanes following dermal exposure is important. This review summarizes available data associated with the dermal absorption/penetration as well as fate of the most commonly used siloxane substances.


Assuntos
Cosméticos , Siloxanas , Humanos , Siloxanas/toxicidade , Siloxanas/química , Pele , Silicones , Dimetilpolisiloxanos
2.
Toxicol Lett ; 375: 29-38, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596351

RESUMO

The most recent version of the octamethylcyclotetrasiloxane (D4) physiologically based pharmacokinetic (model) was developed using the available kinetic studies in male and female F344 rats. Additional data, which had not been included in the D4 model development, allowed for a more detailed assessment of the loss of D4 following long-term exposure in both SD and F344 rats. This new data demonstrated a deficiency in the published PBPK model predictions of terminal concentrations of D4 in plasma and fat 14 days after the end of exposures for 28-days, 6 h/day, where the model predictions were an order of magnitude lower than the data. To capture this time-point without altering the end-of-exposure peak concentrations in blood and fat required conversion of the one-way (liver to fat) mobile lipoprotein pool (MLP) into a bi-directional pool between liver and fat. Simulation of the D4 pharmacokinetics in the SD rat, as opposed to the F344 rat, also required a reduction of both fold induction of liver metabolism (KMAX: 5- to 2-fold) and maximal rate of metabolism (VMAXC: 5.0-1.54 mg/kg0.75). The revised MLP description was extended to the human D4 model using a parallelogram approach between rat and human MLP parameters to establish the parameters for the current model in the absence of similar long-term clearance data in the human. The revised human D4 model provided good fits to the human inhalation and dermal exposure studies while not appreciably altering cross-species dose metrics based on the free concentration of D4 in blood.


Assuntos
Exposição por Inalação , Siloxanas , Ratos , Masculino , Feminino , Humanos , Animais , Ratos Endogâmicos F344 , Exposição por Inalação/efeitos adversos , Siloxanas/toxicidade , Siloxanas/farmacocinética , Cinética , Ratos Sprague-Dawley , Modelos Biológicos , Lipídeos
3.
J Appl Toxicol ; 42(12): 1986-2004, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35863877

RESUMO

Siloxanes are used in personal care, biomedical, and industrial products. Their worldwide use and persistence in the environment cause consistent exposure for both humans and aquatic animals. Two siloxane congeners, decamethylcyclopentasiloxane (D5; CAS 541-02-6) and octamethylcyclotetrasiloxane (D4; CAS 556-67-2), are among the most prevalent, with measurable levels in air, sediment, water, and biological samples. However, few studies have examined the impact of developmental (embryo/larva) exposure. To address this gap, we performed parallel experiments using wildtype zebrafish (Danio rerio). One set of experiments used laboratory-mixed individual solutions containing either D4, D5, or 2,4,6,8-tetramethylcyclotetrasiloxane (D4 H ; CAS 2370-88-9); the other used environmental water samples containing a mixture of siloxanes, including D4 and D5. These samples were collected from Bladensburg Waterfront Park (BWP) a site along the Anacostia River, Washington, DC. In both experiments, zebrafish (24-48 h postfertilization, hpf) were exposed until 7 or 14 days (d)pf. Chronic exposure to D4, D5, or BWP water until 7 dpf caused stress-like behaviors and reduced swim velocities; anatomical differences were noted only in BWP-exposed larvae. At 14 dpf, BWP-treated larvae still showed slower swimming velocities and increased immobility; anatomical differences were no longer evident and thigmotactic behavior was reduced. D4 and D5-exposed larvae did not survive after 10 dpf. Larvae exposed to D4 H showed no decreases in behavior or growth at either age. These results suggest early developmental sensitivity to siloxane exposure and point to the need to consider embryonic/larval endpoints when assessing aquatic contaminants.


Assuntos
Siloxanas , Poluentes Químicos da Água , Humanos , Animais , Siloxanas/toxicidade , Peixe-Zebra , Rios , Larva , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Toxicol Lett ; 357: 57-72, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995712

RESUMO

Octamethylcyclotetrasiloxane (D4), a highly lipophilic, volatile compound with low water solubility, is metabolized to lower molecular weight, linear silanols. Toxicity has been documented in several tissues in animals following mixed vapor/aerosol exposures by inhalation at near saturating vapor concentrations or with gavage dosing in vegetable oil vehicles. These results, together with more mechanism-based studies and detailed pharmacokinetic information, were used to assess likely modes of action (MOAs) and the tissue dose measures of D4 and metabolites that would serve as key events leading to these biological responses. This MOA analysis indicates that pulmonary effects arise from direct epithelial contact with mixed vapor/aerosol atmospheres of D4; liver hypertrophy and hepatocyte proliferation arise from adaptive, rodent-specific actions of D4 with nuclear receptor signaling pathways; and, nephropathy results from a combination of chronic progresive nephropathy and silanol metabolites binding with alpha-2u globulin (a male rat specific protein). At this time, the MOAs of other liver effects - pigment accumulation and bile duct hyperplasia (BDH) preferentially observed in Sprague-Dawley (SD) rats- are not known. Hypothalamic actions of D4 delaying the rat mid-cycle gonadotrophin releasing hormone (GnRH) surge that result in reproductive effects and subsequent vaginal/uterine/ovarian tissue responses, including small increases in incidence of benign endometrial adenomas, are associated with prolongation of endogenous estrogen exposures due to delays in ovulation. Human reproduction is not controlled by a mid-cycle GnRH surge. Since the rodent-specific reproductive and the vaginal/uterine/ovarian tissue responses are not relevant for risk assessments in human populations, D4 should neither be classified as a CMR (i.e., carcinogenic, mutagenic, or toxic for reproduction) substance nor be regarded as an endocrine disruptor. Bile duct hyperplasia (BDH) and pigment accumulation in liver seen in SD rats are endpoints that could serve to define a Benchmark Dose (BMD) or No-Observed-Effect-Level (NOEL) for D4 although their human relevance remains uncertain.


Assuntos
Proliferação de Células/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Siloxanas/farmacocinética , Siloxanas/toxicidade , Animais , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Humanos , Mutagênicos/toxicidade , Nível de Efeito Adverso não Observado , Ratos , Ratos Sprague-Dawley , Medição de Risco
5.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884750

RESUMO

Cyclic siloxane octamethylcyclotetrasiloxane (D4) has raised concerns as an endocrine-disrupting chemical (EDC). D4 is widely used in detergent products, cosmetics, and personal care products. Recently, robust toxicological data for D4 has been reported, but the adverse effects of D4 on brain development are unknown. Here, pregnant mice on gestational day 9.5 were treated daily with D4 to postnatal day 28, and the offspring mice were studied. The prenatal D4-treated mice exhibited cognitive dysfunction, limited memory, and motor learning defect. Moreover, prenatal D4 exposure reduced the proliferation of neuronal progenitors in the offspring mouse brain. Next, the mechanisms through which D4 regulated the cell cycle were investigated. Aberrant gene expression, such as cyclin-dependent kinases CDK6 and cyclin-dependent kinase inhibitor p27, were found in the prenatal D4-treated mice. Furthermore, the estrogen receptors ERa and ERb were increased in the brain of prenatal D4-treated mice. Overall, these findings suggest that D4 exerts estrogen activity that affects the cell cycle progression of neuronal progenitor cells during neurodevelopment, which may be associated with cognitive deficits in offspring.


Assuntos
Disruptores Endócrinos/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Siloxanas/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proliferação de Células , Cognição/efeitos dos fármacos , Disruptores Endócrinos/administração & dosagem , Feminino , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Atividade Motora/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Fatores de Transcrição SOXB1/genética , Siloxanas/administração & dosagem , Comportamento Social
6.
Crit Rev Toxicol ; 51(7): 571-590, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34877914

RESUMO

This review is a hypothesis driven, mechanistic evaluation of the potential for octamethylcyclotetrasiloxane (D4) to produce any effects via endocrine modes of action. D4 is a volatile, lipophilic liquid used in the production of high molecular weight dimethylsiloxane polymers. These are used in a variety of industrial, medical, cleaning, and personal care products, and they may contain low levels of residual D4. Low concentrations of D4 are found in the environment and there is potential for low level human exposure. All of the measured environmental and workplace levels of D4 fall below no observed effect levels (NOEL). Most of the effects of high dose D4 involve the female reproductive system. In the mature intact female rat following chronic high dose exposure, D4 may cause inhibition of mating and ovulation, decreased live litter sizes, small increases in the estrogen to progesterone ratio primarily through decreases in progesterone, and increases in uterine hyperplasia. When endogenous estrogens are very low, high dose D4 causes increases in some uterine parameters. To assess whether these high dose effects can be attributed to an endocrine mode of action, endpoints are ranked for relevance and strength, consistent with published concepts. When sufficient information is available the level of activity of D4 for producing the observed effect is compared with that of potent endocrines. The conclusions reached are that all of the effects of D4 fall well short of any established criteria for D4 to be capable of producing any adverse effect via an endocrine mode of action.


Assuntos
Siloxanas , Útero , Animais , Feminino , Nível de Efeito Adverso não Observado , Ratos , Reprodução , Siloxanas/toxicidade
7.
Regul Toxicol Pharmacol ; 122: 104923, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33831492

RESUMO

This paper compares the phase-specific inhalation toxicity of the cyclic semi-volatile methylsiloxanes (cVMSs) D4, D5 and D6. The objectives of this paper are to re-analyze information from acute to chronic inhalation studies on rats with these cVMSs to identify the unifying principles of phase-specific toxicity at the portal-of-entry and if they depend on acute, acute-on-chronic or chronic mechanisms. This re-analysis supports the hypothesis that concentrations must be high enough to exceed the vapor saturation at any given temperature for stabilizing the aerosol phase and evoking phase-specific effects at sites of the respiratory tract susceptible to the cVMSs-specific physicochemical properties amphiphilicity and surface tension. In summary, the portal-of-entry effects and related findings appear to be acute in nature and specific to liquid aerosol. The repeated inhalation exposure studies with D4 and D5 up to two years in duration did not reveal chronic aggravations of portal of entry outcomes. Findings at a pulmonary location where amphiphilic surfactant molecules are present appear to be caused by the acute adaptation to deposited dose. Such outcome should better be described as a high-dose liquid aerosol phenomenon imparted by the physicochemical properties "liquid" and "hydrophobic". This calls for a phase-specific human risk characterization of cVMSs.


Assuntos
Exposição por Inalação/análise , Siloxanas/química , Siloxanas/toxicidade , Aerossóis/química , Aerossóis/toxicidade , Animais , Relação Dose-Resposta a Droga , Ratos , Siloxanas/administração & dosagem , Soluções/química , Soluções/toxicidade
8.
J Hazard Mater ; 415: 125683, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773252

RESUMO

The ecological harm from methylsiloxanes has drawn worldwide attention. This study investigated three cyclic (D4-D6) and four linear siloxanes (L7-L10) in the eggs of free-range poultry collected near a rural industrial park in China and found total concentrations in the range of 19.2-1204 (median, 268) ng/g dry weight. Higher concentrations of methylsiloxanes were observed in chicken eggs than duck eggs. Cyclic siloxanes represented a median of 62.2% of the total methylsiloxane concentrations. A source assessment indicated that local soils and outdoor dust were more important sources of egg methylsiloxanes than poultry food. The partitioning of methylsiloxanes between egg yolk and egg albumen was investigated, and preferential distributions of the chemicals in the yolk were observed. This study confirmed that methylsiloxanes were highly prevalent in the study poultry eggs. The results suggested that the potential risks to some wild birds inhabiting this area should be of concern, as their physiologies and feeding ecologies are similar to those of the studied poultry, although available ecotoxicological data of the chemicals to birds remains scarce. Additional research is needed to characterize the accumulation of methylsiloxanes in different bird species and its associated adverse effects on their offspring.


Assuntos
Aves Domésticas , Siloxanas , Animais , Aves , China , Poeira , Siloxanas/análise , Siloxanas/toxicidade
9.
Chemosphere ; 241: 125126, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31683444

RESUMO

To study the fate of cyclic volatile methyl siloxanes (cVMS) undergoing photooxidation in the environment and to assess the acute toxicity of inhaled secondary aerosols from cVMS, we used an oxidative flow reactor (OFR) to produce aerosols from oxidation of decamethylcyclopentasiloxane (D5). The aerosols produced from this process were characterized for size, shape, and chemical composition. We found that the OFR produced aerosols composed of silicon and oxygen, arranged in chain agglomerates, with primary particles of approximately 31 nm in diameter. Lung cells were exposed to the secondary organosilicon aerosols at estimated doses of 54-116 ng/cm2 using a Vitrocell air-liquid interface system, and organic gases and ozone exposure was minimized through a series of denuders. Siloxane aerosols were not found to be highly toxic.


Assuntos
Aerossóis/química , Pulmão/efeitos dos fármacos , Siloxanas/química , Células A549 , Aerossóis/toxicidade , Gases/química , Humanos , Pulmão/citologia , Oxirredução , Tamanho da Partícula , Siloxanas/toxicidade
10.
Clin Oral Investig ; 23(1): 133-139, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29603022

RESUMO

OBJECTIVES: Tooth-colored composites have emerged as a standard restorative material in caries therapy and have largely replaced materials such as silver amalgam or glass ionomer cements. In addition to their superior esthetics and desirable mechanical properties, composites also comprise negative characteristics, such as wear, shrinkage, and an adverse biocompatibility. Modifications of classic resin-based dental composites have been developed to overcome these shortcomings. For example, ormocers are innovative inorganic-organic hybrid polymers that form a siloxane network modified by the incorporation of organic groups. Recently, a new ormocer, Admira Fusion (VOCO), was introduced to composite technology. The absence of cytotoxic matrix monomers leads to the hypothesis that ormocers have improved biocompatibility compared to resin-based dental restorative materials. MATERIALS AND METHODS: The aim of this study was to compare the cytotoxic effects of Admira Fusion to a nanohybrid composite (GrandioSO, VOCO) and a nanofiller composite (Filtek Supreme XTE, 3M Espe) on the standard dermal mouse fibroblasts (L929) and human gingival fibroblasts (GF-1) via a Cell Counting Kit-8 (CCK-8) assay. RESULTS: Admira Fusion was significantly less cytotoxic than GrandioSO and Filtek Supreme XTE to both the standard mouse dermal fibroblasts (L929) and human gingival fibroblasts. CONCLUSIONS: Compared to other resin-based dental restorative materials, the ormocer (Admira Fusion) possesses a superior biocompatibility in vitro. Future research studies are needed to confirm our results. CLINICAL SIGNIFICANCE: Clinically, dental practitioners and their patients might benefit from Admira Fusion in terms of reduced adverse biologic reactions compared to resin-based dental restorative materials.


Assuntos
Resinas Acrílicas/toxicidade , Resinas Compostas/toxicidade , Materiais Dentários/toxicidade , Fibroblastos/efeitos dos fármacos , Cerâmicas Modificadas Organicamente/toxicidade , Poliuretanos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Gengiva/citologia , Humanos , Teste de Materiais , Metacrilatos/toxicidade , Camundongos , Siloxanas/toxicidade
11.
Regul Toxicol Pharmacol ; 98: 209-214, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056248

RESUMO

In the context of a larger testing programme that aimed at assessing the skin sensitisation potential of functional polysiloxanes and silanes, this investigation complements the available in vitro and in vivo data with data in the SENS-IS assay, a human in vitro 3D skin-based model. The SENS-IS assay allowed testing of all functional polysiloxanes and silanes without any solubility issues or limitations related to the multiconstituent nature of the commercial grade test substances. It appeared to encompass skin metabolism, a factor which we considered important for the skin sensitisation hazard assessment particularly of aminofunctionalised siloxanes and silanes. These three technical aspects posed significant challenges in the first part of the in vitro programme with the OECD-validated in vitro assays. The SENS-IS assay delivered promising results for this group of substances. On its own, it was the best performing model, as it did not pose any technical issues with the assay and it matched all in vivo outcomes. Considering its performance and avoidance of any limitations due to lack of solubility or chemical composition aspects, we concluded that the SENS-IS assay to be a suitable starting point for an integrated testing strategy for skin sensitisation for the group of functional polysiloxanes and silanes.


Assuntos
Alérgenos/toxicidade , Bioensaio , Haptenos/toxicidade , Irritantes/toxicidade , Silanos/toxicidade , Siloxanas/toxicidade , Dermatite Alérgica de Contato , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo
12.
Sci Total Environ ; 636: 1382-1395, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29913599

RESUMO

D4 (octamethylcyclotetrasiloxane) is a high-production-volume cyclic volatile methyl siloxane with a wide range of industrial and consumer applications. This study conducted a robust ecological risk evaluation for D4 using exposure data collected under a nation-wide environmental monitoring program facilitated under the Toxic Substances Control Act (TSCA). This ecological risk evaluation was conducted consistent with the principles outlined in the U.S. Environmental Protection Agency's (EPA's) Guidance to Assist Interested Persons in Developing and Submitting Draft Risk Evaluations under TSCA (U.S. EPA 2017a). The evaluation examined multiple lines of evidence (LoEs) to determine the potential risks from D4 to aquatic receptors in rivers and streams in the United States from municipal wastewater treatment plant (WWTP) discharges and discharges from manufacturing, processing, and/or formulating (MPF) facilities after onsite wastewater treatment. The LoEs consisted of comparing D4 concentrations measured in water and sediment to toxicity thresholds derived from laboratory studies; comparing D4 concentrations measured in biota tissue to critical target lipid body burdens (CTLBBs); comparing fugacity-based chemical activities between toxicity thresholds and measured environmental concentrations; and assessing benthic macroinvertebrate community structure and habitat suitability. The approach taken moves beyond a standard deterministic hazard quotient approach to incorporate more advanced methods for risk prediction, using distributions rather than conservative point estimates of exposure to obtain a realistic view of the probability of harm, consistent with EPA's stated intent to "strive to utilize probabilistic approaches for exposure assessments included in a risk evaluation" (U.S. EPA 2017b). The risk evaluation concluded there is negligible risk to water column and sediment receptors from D4 discharged from MPF facilities after onsite wastewater treatment or from municipal WWTPs that may treat a mix of industrial and consumer wastewater.


Assuntos
Monitoramento Ambiental , Política Ambiental , Siloxanas/toxicidade , Poluentes Químicos da Água/toxicidade , Medição de Risco/métodos , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
Chemosphere ; 192: 337-347, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29121563

RESUMO

This study utilized probabilistic risk assessment techniques to compare field sediment concentrations of the cyclic volatile methylsiloxane (cVMS) materials octamethylcyclotetrasiloxane (D4, CAS # 556-67-2), decamethylcyclopentasiloxane (D5, CAS # 541-02-6), and dodecamethylcyclohexasiloxane (D6, CAS # 540-97-6) to effect levels for these compounds determined in laboratory chronic toxicity tests with benthic organisms. The concentration data for D4/D5/D6 in sediment were individually sorted and the 95th centile concentrations determined in sediment on an organic carbon (OC) fugacity basis. These concentrations were then compared to interpolated 5th centile benthic sediment no-observed effect concentration (NOEC) fugacity levels, calculated from a distribution of chronic D4/D5/D6 toxicologic assays per OECD guidelines using a variety of standard benthic species. The benthic invertebrate fugacity biota NOEC values were then compared to field-measured invertebrate biota fugacity levels to see if risk assessment evaluations were similar on a field sediment and field biota basis. No overlap was noted for D4 and D5 95th centile sediment and biota fugacity levels and their respective 5th centile benthic organism NOEC values. For D6, there was a small level of overlap at the exposure 95th centile sediment fugacity and the 5th centile benthic organism NOEC fugacity value; the sediment fugacities indicate that a negligible risk (1%) exists for benthic species exposed to D6. In contrast, there was no indication of risk when the field invertebrate exposure 95th centile biota fugacity and the 5th centile benthic organism NOEC fugacity values were compared.


Assuntos
Medição de Risco/métodos , Siloxanas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biota/efeitos dos fármacos , Invertebrados/efeitos dos fármacos , Poluentes Químicos da Água/análise
16.
Toxicol Lett ; 279 Suppl 1: 54-74, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842205

RESUMO

Octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) are used as intermediates or monomers in the synthesis of silicon-based polymers for industrial or consumer applications. D4 and D5 may remain as residual monomer in these polymers at less than 1000ppm and may therefore be present as a minor impurity in consumer products. For D5, in addition to the manufacture of polymers, its uses include intentional addition to consumer products, personal care products and some dry- cleaning solvents. Two-year rodent chronic bioassays were conducted with both substances and borderline increases in the incidence of uterine tumors were observed, specifically, benign uterine adenoma with D4 and adenocarcinoma with D5. The effects profile and induction of uterine tumors share some similarity with that seen with chronic exposure to dopamine agonists. The current study investigated the potential for D4 and D5 to elicit dopamine agonist-like effects on estrous cyclicity. Separate groups of reproductively senescent female Fischer 344 rats (F344) were exposed via vapor inhalation to D4 (700ppm, 9.3mg/L) or D5 (160ppm, 2.1mg/L) or to a diet containing 0.0045, 0.045, or 4.5ppm pergolide mesylate (PM), a potent dopamine agonist used here as a reference substance, from 11 through 24 months of age. The primary focus was to characterize the effects of D4 and D5 exposure on estrous cyclicity relative to that observed with PM. As a monitoring effort, circulating endogenous estradiol, progesterone, prolactin and corticosterone levels were evaluated monthly. A blood sample from each rat was obtained via tail vein in the afternoon after the daily inhalation exposure period once every 4 weeks. Histomorphologic examination of the major organs including the reproductive tract was conducted on all animals at study termination. This study has shown that chronic exposure to D4 and D5 can affect cyclicity in the reproductively senescent F344 rat. For each substance the effect on cyclicity involved reduction in the incidence of pseudopregnancy with a shift toward cycles more typical of younger animals. D4 and D5 induced an increase in estrous cycle repetition whereas D4 also increased the incidence of extended estrus. These shifts resulted in animals entering proestrus/estrus significantly more times over the duration of the study than seen in the control group. Similar effects were observed with the reference substance, PM. However, distinct differences in the timing and magnitude of the effects on the estrous cycle and impact on prolactin, progesterone, estradiol, and corticosterone suggest that D4 and D5 are not classical dopamine agonists even though a similar increased incidence of proestrus/estrus was also observed with PM. These results may prove important with respect to understanding D4- and D5-induced uterine tumor response in the F344 rat, given the relationship between increased incidence of uterine endometrium stimulation by endogenous estrogen as a consequence of extended or more frequent proestrus/estrus, uterine tumor risk, and questions of relevance to humans. Recent publications have summarized the existing data on D4 and D5, with emphasis on exploring the biological relevance of the uterine tumors (Klaunig et al., 2016a,b; Franzen et al., 2017; Dekant and Klaunig, 2016; Dekant et al., 2017). The authors concluded that although the mode of action has not yet been fully established, the data, including the findings from this study, indicate that the D4- and D5-induced uterine tumors observed in the rodent chronic bioassays have no relevance for human risk characterization based not only on the distinct species differences in regulation of the reproductive systems, but also the high exposure levels and duration required for expression in rats.


Assuntos
Siloxanas/toxicidade , Envelhecimento , Ração Animal/análise , Animais , Dieta/veterinária , Esquema de Medicação , Ciclo Estral , Feminino , Exposição por Inalação , Pergolida/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Siloxanas/administração & dosagem , Siloxanas/química
17.
Toxicol Lett ; 279 Suppl 1: 75-97, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28676441

RESUMO

Octamethylcyclotetrasiloxane (D4) is a cyclic volatile methylsiloxane primarily used in the synthesis of silicon-based materials used in a variety of consumer products. This paper details the chronic toxicity and oncogenicity evaluation of D4 in the Fischer 344 rat. Animals were exposed to 0, 10, 30, 150, or 700ppm D4 vapor for 6h/day, 5days/week for up to 104 weeks in whole-body inhalation chambers. Effects of two year chronic exposure included increased liver, kidney, testes, and uterine weight with correlating microscopic findings of hepatocellular hypertrophy (males only), chronic nephropathy (both sexes), interstitial cell hyperplasia, and cystic endometrial hyperplasia and endometrial adenoma, respectively. Upper respiratory tract irritation and lymphocytic leukocytosis were evident in both sexes. Increased neoplasia was demonstrated only in the uterus. Uterine endometrial adenomas were present in four of sixty animals exposed to 700ppm D4 for 24 months. None were present in the other treatment groups. In contrast, in 700ppm D4 group males the incidence of pituitary and pancreatic neoplasia was reduced as was thyroid c-cell adenoma/carcinoma in 700ppm females. This study has identified that D4 is a mild respiratory irritant and increases liver and kidney weight without inducing neoplasia in these tissues. The increased incidence of uterine adenoma was the only treatment-related neoplastic finding associated with chronic exposure to D4.


Assuntos
Adenoma/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/patologia , Neoplasias do Endométrio/induzido quimicamente , Nefropatias/induzido quimicamente , Siloxanas/toxicidade , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/metabolismo , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Feminino , Nefropatias/patologia , Masculino , Estrutura Molecular , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Siloxanas/administração & dosagem , Siloxanas/química , Siloxanas/metabolismo
18.
Toxicol Lett ; 279 Suppl 1: 2-22, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28645863

RESUMO

Octamethylcyclotetrasiloxane (D4) is a volatile cyclic siloxane used primarily as a monomer or intermediate in the production of some silicon-based polymers widely used in industrial and consumer applications and may be present as a residual impurity in a variety of consumer products. A robust toxicological data set exists for D4. Treatment-related results from a chronic inhalation study conducted in rats are limited to mild effects on the respiratory tract, increases in liver weight, increases in the incidence of uterine endometrial epithelial hyperplasia, and a dose-related trend in the incidence of endometrial adenomas. The observed increases in liver weight appear to be related to the induction of hepatic metabolizing enzymes, similar to those that are induced in the presence of phenobarbital. D4 is not mutagenic or genotoxic in standard in vitro and in vivo tests; therefore, the benign uterine tumors observed likely occur by a non-genotoxic mechanism. Results from mechanistic studies suggest that D4 has very weak estrogenic and antiestrogenic activity, as well as dopamine agonist-like activity. In rats, D4 exposure delays ovulation and hypothesized to prolong exposure of the uterine endometrium to endogenous estrogen. Though this mode of action may play a role in the development of benign uterine tumors in the rat, it is considered unlikely to occur in the human due to the marked differences in cycle regulatory mechanisms. Reproductive effects were observed following D4 exposure in female rats. These effects appear to be related to a delay of the luteinizing hormone (LH) surge, which fails to induce complete ovulation in the rat. However, based on differences in ovulatory control in rats and humans, it appears these effects may be species-specific with no risk or relevance to human health. Results from pharmacokinetic studies indicate that dermal absorption of D4 is limited, due to its high volatility and, if absorbed via dermal, oral or inhalation exposure, the majority of D4 is rapidly cleared from the body, indicating bioaccumulation is unlikely.


Assuntos
Poluentes Ambientais/toxicidade , Siloxanas/toxicidade , Animais , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Humanos , Estrutura Molecular , Siloxanas/administração & dosagem , Siloxanas/química , Siloxanas/farmacocinética
19.
Toxicol Lett ; 279 Suppl 1: 23-41, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28522410

RESUMO

Octamethylcyclotetrasiloxane (D4) is a low-molecular-weight volatile cyclic siloxane, primarily used as an intermediate in the production of some widely-used industrial and consumer silicone based polymers and may be present as a component in a variety of consumer products. A global "harmonized" risk assessment was conducted to meet requirements for substance-specific risk assessments conducted by regulatory agencies such as USEPA's Integrated Risk Information System (IRIS), Health Canada's Chemical Management Program (CMP) and various independent scientific committees of the European Commission (e.g. the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER)), as well as to provide guidance for chemical safety assessments under REACH in Europe. This risk assessment incorporates global exposure information combined with a Monte Carlo analysis to determine the most significant routes of exposure. Utilization of a multi-species, multi-route physiologically based pharmacokinetic (PBPK) model was included to estimate internal dose metrics, benchmark modeling was used to determine a point of departure (POD), and a margin of safety (MOS) evaluation was used to compare the estimates of intake with the POD. Because of the specific pharmacokinetic behaviors of D4 including high lipophilicity, high volatility with low blood-to-air partition coefficients and an extensive metabolic clearance that regulates tissue dose after exposure, the use of a PBPK model was essential to provide a comparison of a dose metric that reflects these processes. The characterization of the potential for adverse effects after exposure to D4 using a MOS approach based on an internal dose metric removes the subjective application of varying uncertainty factors from various regulatory agencies and allows examination of the differences between internal dose metrics associated with exposure and those associated with adverse effects.


Assuntos
Poluentes Ambientais/toxicidade , Medição de Risco/métodos , Siloxanas/toxicidade , Adulto , Envelhecimento , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Exposição Ambiental , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/química , Saúde Global , Humanos , Pessoa de Meia-Idade , Método de Monte Carlo , Siloxanas/administração & dosagem , Siloxanas/química , Adulto Jovem
20.
Toxicol Lett ; 279 Suppl 1: 125-135, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28408153

RESUMO

The multi-compound, and multi-dose (MC-MD) route physiologically based pharmacokinetic (PBPK) model for cyclic siloxanes reported by McMullin et al. (2016) brought together the series of models for octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in rat and human into a unified code structure that would allow simulation of both compounds following the inhalation and dermal routes of exposure. The refined MC-MD PBPK model presented here expands upon this effort to include representation of rat kinetic data in plasma, tissues and exhaled breath for the parent compounds after oral bolus administration. Additional refinements were made with regards to hepatic induction of metabolism in the liver and allometric scaling of rate constants for the deep tissue compartments which will allow the MC-MD model to be used in uncertainty analysis. Overall, the refined MC-MD model was able to reproduce both parent D4 and D5 kinetic data in rat and human after inhalation exposure (rat and human) or dermal exposure (human). The inclusion of sequestered (i.e., lipid associated) oral absorption into plasma after oral bolus dosing successfully described the lack of exhalation as well as the initial distribution of siloxane to the liver which was higher than simple partitioning from plasma would allow. The refined MC-MD PBPK model presented here can be incorporated into uncertainty and variability analysis and cross-species dosimetry for both D4 and D5.


Assuntos
Exposição Ambiental , Siloxanas/metabolismo , Administração Oral , Adulto , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Exposição por Inalação , Masculino , Modelos Biológicos , Ratos , Siloxanas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...